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Phase transition in polypeptides: a step
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Abstract. We present a formalism which turns out to be very successful in the description of the polypep-
tide folding. We consider this process as a first-order phase transition and develop a theory which is free
of model parameters and is based solely on fundamental physical principles. It describes essential ther-
modynamical properties of the system such as heat capacity, the phase transition temperature and others
from the analysis of the polypeptide potential energy surface calculated within ab initio density functional
theory and parameterized by two dihedral angles. This problem is viewed as a major breakthrough in the
theoretical understanding of the protein folding process. Our conclusion is based on the comparison of the
predictions of our theory with the results of several independent experiments.

PACS. 82.60.Fa Heat capacities and heats of phase transitions – 87.15.He Dynamics and conformational
changes – 64.70.Nd Structural transitions in nanoscale materials – 64.60.-i General studies of phase
transitions

We have developed a theory, which explains results of sev-
eral experiments in which the folding process of polyala-
nine chains has been studied. This problem is of major
current interest, because it deals with the simplified ver-
sion of one of the most challenging interdisciplinary prob-
lems: the problem of protein folding. Although the number
of published papers in this field during the recent years is
enormous, the issue remains open, since there is still no
unique approach capable of explaining all the aspects of
this complex dynamical process (for review see [1,2]).

Alanine polypeptides (PPs) are an example of a sys-
tem, which shows distinctive property of folding while it
is simple enough for an advanced theoretical description.
In this letter we focus on the theoretical description of the
transition of an alanine chain from the α−helix conforma-
tion to a random coil (RC) state. We treat this transition
as a phase transition and develop a theory which is free
of model parameters and is based solely on fundamental
physical principles. This feature of our approach makes
it very different from earlier theoretical considerations of
this process [2–7], which all contained model parameters
making them rather poor in the quantitative description
of the folding process for concrete systems.

Let us consider a thermodynamically equilibrated en-
semble of N equal PP chains. Each PP consists of n amino
acids and can be present in one of numerous isomeric
states having different energies. A group of isomeric states
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with similar characteristic physical properties is called a
phase state of the PP. Then, the phase transition is a trans-
formation of the PP from one phase state to another.

The first order phase transition is characterized by an
abrupt sudden change of the internal energy of the system
with respect to its temperature, while heat capacity as a
function of temperature has a sharp peak [8]. We study
the manifestation of this peculiarity for our system. The
heat capacity of the system is defined by the partition
function, which can be expressed as follows:

Z =

⎛
⎝ ∑

p∈phase

∑
j∈state

Zjp

⎞
⎠

N

. (1)

Here Zjp is the partition function of the PP chain in a
particular isomeric state j and phase p.

To construct Zjp one needs to know the Hamiltonian
function of the PP chain. The Hamiltonian function is a
sum of the potential, kinetic and vibrational energy terms.
For a PP chain in a particular isomeric state j consisting
of m atoms we obtain:

Zjp = e−
Ejp
kT

⎡
⎣ VjpM

3/2
√
I
(1)
jp
I
(2)
jp
I
(3)
jp

43m−6π�3m
∏3m−6

α=1 ω
(α)
jp

⎤
⎦ (kT )3m−3

= γjpe
−Ejp

kT (kT )3m−3, (2)

where M , Vjp , I(1,2,3)
jp

, ω(α)
jp

and Ejp are the mass, the
specific volume, the three main momenta of inertia, the
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frequencies of normal vibration modes, and the potential
energy of the PP in the state j and phase p, respectively.
k and T are the Boltzmann constant and the temperature
respectively. γjp denotes the factor in the square brackets.
This equation has been derived within the harmonic ap-
proximation, which is a framework for the description of
the molecule in the vicinity of its equilibrium points.

The phase transition is characterized by the transi-
tion temperature T0, the temperature range of the phase
transition ∆W and the specific heat Q. It is possible to
derive analytical expressions for these quantities if all iso-
meric states of a PP in a certain phase have the same
energy. This model is usually referred in literature as the
two-energy-level model [9]. It turns out to be very useful
for the qualitative analysis of the phase transitions in PP
chains. If one considers the phase transition between two
such phases, the partition function (Eq. (1)) can then be
rewritten in the following form:

Z ≈ Z0

[
1 + γ

η2
η1
e−

∆E
kT

]N

, (3)

where Z0 is the partition function of the system in the first
phase, ∆E = E2−E1 is the energy difference between the
states of the PP in two different phases, η1 and η2 are the
numbers of isomeric states of the PP in the first and in
the second phases respectively, γ = γ2/γ1 is the coefficient
depending on masses, specific volumes, normal vibration
modes frequencies and momenta of inertia of the PP in
the two phases.

The expression for the heat capacity in the framework
of this model is given by:

C(T ) = kT
∂2T lnZ
∂T 2

=
Nγ η2

η1
∆E2e−(∆E

kT )

kT 2
(
1 + γ η2

η1
e−(∆E

kT )
)2 . (4)

This function has a maximum, which corresponds to the
phase transition of the system. The expressions for T0, the
corresponding maximum heat capacity value C0, ∆W and
Q are:

T0 ≈ ∆E

k ln
(
γ η2

η1

) =
N∆E

∆S
, (5)

C0 ≈ Nk

4

[
ln

(
γ
η2
η1

)]2

, Q =
∫
C(T )dT
m

=
∆E

µ
,

∆W ≈
√

64 ln 2
π

∆E

k
[
ln

(
γ η2

η1

)]2 =

√
64 ln 2
π

N2k∆E

∆S2
.

Here ∆S = Nk ln η2 − Nk ln η1 is the entropy change in
the system and µ is the mass of a single PP.

The secondary structure of a PP chain is characterized
by a set of dihedral angles ϕi and ψi [10,11] (see Fig. 1).
Both angles are defined by the four neighboring atoms in
the PP chain. The angle ϕi is defined as the dihedral angle
between the planes formed by the atoms (C′

i−1−Ni−Cα
i )

and (Ni−Cα
i −C′

i). The angle ψi is defined as the dihedral

Fig. 1. (Color online)
Dihedral angles ϕ and
ψ used for charac-
terization of the sec-
ondary structure of a
PP chain.

Fig. 2. (Color online) Potential energy surface for the alanine
hexapeptide calculated by the B3LYP/6-31G(2d,p) method
[11]. Energies are given with respect to the lowest energy min-
imum of the potential energy surface in eV, kcal/mol and
Kelvin. Numbers mark energy minima on the potential energy
surface.

angle between the (Ni − Cα
i − C′

i) and (Cα
i − C′

i − Ni+1)
planes. The atoms are numbered from the NH2− terminal
of the PP. The angles ϕi and ψi are defined in the interval
[−180◦;180◦]. For the unambiguous definition we count the
angles ϕi and ψi clockwise, if one looks at the molecule
from its NH2− terminal (see Fig. 1). This definition is the
most commonly used one [12].

The angles ϕi and ψi can be defined for all amino
acids excluding the boundary ones. The variation of these
angles describes the twisting of the PP chain. In this letter
we demonstrate that these particular degrees of freedom
are ones responsible for the dynamics of the PP chain
experiencing the α−helix↔RC phase transition.

Each amino acid in the PP chain has a number of sta-
ble conformations characterized by certain values of the
angles ϕ and ψ. The potential energy surface of a PP
chain calculated versus angles ϕ and ψ for any amino
acid carries essential information about the conforma-
tions of this amino acid. Since we are focused on the
α−helix↔RC phase transition in polyalanine chains, in
Figure 2 we present, for the sake of example, the poten-
tial energy surface for the alanine hexapeptide with the
helix-like secondary structure calculated within ab initio
theoretical framework using the density functional the-
ory (DFT) accounting for all electrons in the system [11].
Such calculations allow us to conclude about the number
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of conformations of each amino acid in the PP and to
obtain the characteristic distribution of energies of these
conformations. We demonstrate that with these data at
hand one can explain reasonably well the dependence of
the heat capacity of the system on temperature and thus
to prove that the twisting degrees of freedom for a PP
chain are responsible for the observed phase transition.

It is not feasible to study the dependence of poten-
tial energy on all possible angles ϕ and ψ for all amino
acids, because the amount of computer powers required
for such DFT computation would be enormous. However
one can expect that for the inner amino acids of a PP the
dependence of the potential energy surfaces on the twist-
ing angles should be similar if the amino acids are loosely
correlated. For alanines this condition is fulfilled, because
alanines have neutral non-polar CH3−side radicals and
thus interact weakly with each other along the PP chain.
The study of correlation functions for different amino acids
in a PP chain is an interesting question, which is certainly
worth to study for larger PP chains consisting of larger
amino acids. In this paper we do not further touch this
question and leave it open for further investigation.

In our calculation we assume that for all amino acids
in the PP chain the potential energy surfaces are topolog-
ically similar, which should be a reasonable assumption
providing the correlation function between pairs of amino
acids in the chain is small. In this letter we do not dis-
cuss the influence of correlation functions on the potential
energy surface of PPs and leave this question open for
further investigation and detalization.

Figure 2 shows that there are five minima on the po-
tential energy surface corresponding to the stable confor-
mations of alanine in the PP chain. In principle, one can
expect that the potential energy landscape might experi-
ence some change with the growth of the PP chain length.
However, the relevant minima, their number and the rel-
ative energies should vary only a little as it is seen from
the comparison of the potential energy landscapes for the
alanine tri and hexapeptide [11]. The exact numerical ver-
ification of this statement requires significant computer
resources and will be definitely a subject for the future
work. In the α-helix phase the PP can be found in a sin-
gle isomeric state, because in this case all amino acids in
the PP are in the lowest energy conformation (see Fig. 3).
In the RC phase the amino acids can occupy only the ex-
cited energy states (2–5). Thus, for a PP consisting of 50
amino acids, the number of different isomeric states of the
PP is estimated to be of the order of 450.

The partition function of the ensemble of N PPs, each
consisting of n identical amino acids, reads:

Z = Z0

⎡
⎣1 + γ

⎛
⎝

κ∑
j=2

e−
εj
kT

⎞
⎠

n⎤
⎦

N

(6)

where κ is the number of conformations of a single amino
acid (in the example considered κ = 5) and εj is the en-
ergy of the jth conformation. γ is the coefficient depend-
ing on the ratio of masses, specific volumes, frequencies
of normal vibrations and momenta of inertia of the PP

Fig. 3. (Color online) Relative energies of different confor-
mations of alanine PP obtained by twisting of a single ala-
nine (top left). Dependence of density of states on their en-
ergy (top right). In the inset we show the dependence of
(dN/dE) exp(−E/kT ) on energy at different temperatures.
The characteristic structural change of the alanine PP in the
phase transition (bottom).

in its two phases. For the α−helix ↔ RC phase transi-
tion γ ≈ 1, because the characteristic bond lengths in the
PP are similar in both phases, the total number of atoms
and the total masses of the system are exactly the same.
This leads to the close values of the frequencies of normal
vibrations and of the momenta of inertia in both phases.

One can expand the second term in equation (6) and
end up with the following sum over all energy states of
the PP in the RC state:

∑
i ζie

− Ei
kT , where Ei and ζi are

the energy and the degeneracy of the ith energetic state
respectively. Each of the energies Ei is equal to a certain
sum of energies εj characterizing the amino acids confor-
mations in the PP chain. Assuming that the energy of each
state is smeared due to the thermal vibrations of the PP,
it is possible to obtain the dependence of the energy den-
sity of states dN/dE. In Figure 3, in the right top plot we
present the density of states as a function of their energy
calculated for a PP consisting of 50 alanines. The second
term in the brackets in equation (6) can be also rewritten
as I(T ) =

∫
(dN/dE) exp(−E/kT )dE. This characteristic

is important, because it becomes equal to one at the tem-
perature of the phase transition. In the inset to the right
top plot in Figure 3, we plot (dN/dE) exp(−E/kT ) as a
function of energy. Curve 2 corresponds to the tempera-
ture of the phase transition, while curves 3 and 1 corre-
spond to the temperatures at which the α−helix and the
RC states are dominant, respectively. From this plot it is
also clear that the largest contribution to the integral I(T )
occurs in the narrow energy range of 0.9−1.5 (eV), which
means that the isomeric states of the PP with higher en-
ergies have only a minimal contribution to the partition
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Fig. 4. (Color online) Dependence of the heat capacity on
temperature. Curves 1, 2 and 3 correspond to the PP, in which
three, four and five conformations of amino acids are taken
into account respectively (the energies of these conformations
are presented in Fig. 3 in the left top corner). Dots are the
experimental results from reference [13]. In the right inset we
present the difference between curves 3 and 2. In the left inset
we present the behavior of the heat capacity curves in a wider
range of temperatures.

function in the vicinity of the phase transition tempera-
ture.

For the description of the α−helix↔RC phase tran-
sition, it is also essential to take the boundary effects of
the PP chain into account. The terminal amino acids are
bound weaker than those inside the chain, and thus, in
both phases they can change their conformation much eas-
ier than the central amino acids. This argument allows one
to treat the terminal and the central amino acids as sta-
tistically independent. Therefore, the partition function of
the whole PP can be written as a product of the partition
functions of its terminal (Zt) and the central parts (Zc):
Z = (ZtZc)N . Thus,

Z = Z0

⎡
⎣

κ∑
j=1

e−
εj
kT

⎤
⎦

Nλ
⎡
⎢⎣1 +

⎛
⎝

κ∑
j=2

e−
εj
kT

⎞
⎠

n−λ
⎤
⎥⎦

N

. (7)

Here λ is the number of amino acids in the terminal part
of the PP. Their number varies in different models from
one to three on each side of the PP [7,8]. We consider two
boundary amino acids on each side (λ = 4).

In Figure 4 we plot the heat capacity as a function of
temperature calculated for the ensemble of the PP chains
consisting of 50 alanines (46 central and 4 terminal). The
maximum of the heat capacity defines the phase transition
temperature. The pronounced maximum in the depen-
dence of the heat capacity on temperature means that the
α−helix↔RC transition is a first-order-like phase transi-
tion. Note that the 5th energy level practically does not
influence on the temperature of the phase transition, be-
cause of its high energy (see curves 2 and 3 in Fig. 4).

The calorimetrically obtained experimental values for
the Ac−Y(AEAAKA)8F−NH2 alanine-rich peptide [13]
are shown in Figure 4 by dots. Figure 4 shows that our
prediction (T th

0 = 28.4 ◦C for the pure alanine PP) is
in a reasonable agreement with the experimental result
(T exp

0 ≈ 40 ◦C) obtained for the alanine-rich PP. The
calculated width of the peak and the maximal value of
the heat capacity are also rather close to the experimental
values. The discrepancies can be attributed to some extent
to the differences in the systems studied.

Another argument why our model predicts lower tem-
perature of the phase transition than the actual experi-
mental value is that the experiments were done for PPs
in solution, while we perform the calculations for the sys-
tem in vacuo. This fact allows one to give a qualitative
justification to the discrepancy between theoretical and
experimental temperatures of the phase transition. The
temperature of the phase transition depends on the en-
tropy change in the system (see Eq. (5)) and should de-
crease if the the entropy change grows. Let us assume that
in vacuo and in solution the entropy changes are ∆Svac

and ∆Ssol respectively. The expression for ∆Ssol reads as:

∆Ssol = Spp
coil + Senv

coil − Spp
helix − Senv

helix (8)
= ∆Spp +∆Senv.

Here Spp
helix and Spp

coil are the entropies of the PP in the
α−helix and RC states respectively; Senv

helix and Senv
coil are

the entropies of the environment, corresponding to the
α−helix and RC phases of the PP; ∆Spp and ∆Senv are
the entropy changes of the PP and of the environment
respectively.

The entropy of the environment is determined by the
number of freely moving solvent molecules (for example
H2O molecules). Some of the water molecules get at-
tracted to the nitrogen and oxygen atoms of PP and form
hydrogen bonds with them. These molecules do not con-
tribute to the entropy of the environment but can influ-
ence the entropy of the PP. The number of surrounding
water molecules is greater in the RC phase, because in this
case many internal hydrogen bonds in the PP get broken,
and additional hydrogen bonds with water molecules can
be formed. Thus Senv

helix > Senv
coil leading to∆Senv < 0. Here

we assumed that the solvent molecules in the α−helix and
the RC phases of the PP have the same phase state which
is reasonable because the phase transition in pure solvent
differs significantly from the phase transition temperature
of the PP.

The entropy change of the PP is determined by the
number of its possible isomeric states in both phases,
which is determined by the number of minima on the po-
tential energy surface. These minima arise mainly due to
the hydrogen bonds which are formed between different
amino acids in the PP chain. For the PP in solution the
number of minima should be not greater than in vacuo,
because the water clathrate which is formed around the
PP prevents it from twisting. Thus ∆Spp � ∆Svac and
∆Svac > ∆Ssol what leads to the shift in the phase tran-
sition temperature in vacuo towards smaller temperatures.
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Fig. 5. (Color online) Dependence of the helicity on temper-
ature (solid line). Triangles, dots and crosses are the experi-
mental data from references [14–16], respectively. Stars are the
results of molecular dynamics simulation taken from [16]. In
the inset we present dependence of the helicity on temperature
calculated for the alanine PP chains consisting of 21, 30, 40
and 50 amino acids.

Note, that the conformations of the amino acids with
larger energies become more important at higher temper-
atures (see the left top inset in Fig. 4). At T = 600 ◦C, the
difference in the heat capacity between the PPs with four
and five possible conformations of amino acids is more
than 10 calmol−1K−1. In particular, this figure demon-
strates that the high energy levels are responsible for the
formation of the plateau beyond the heat capacity peak,
and not the conformational fluctuations, as it was sug-
gested in [9].

Another important characteristic of an ensemble of PP
chains which can be measured experimentally, is the helic-
ity of the system. The helicity of the system describes the
fraction of PPs having the helix structure. The definition
of helicity reads:

fα =
(n− λ)

n
Z−1

c +
λ

n
Z−1

t , (9)

where Zc and Zt are the partition functions of the central
and the terminal parts of the PP (see Eq. (7)).

In Figure 5 we present the dependence of helicity
on temperature calculated for a polyalanine consist-
ing of 21 alanines and compare it with the available
experimental data and the results of other theo-
retical works [14–16] obtained for alanine-rich PPs.
In [14,15] the experimental points were recorded
for the MABA−[A]5−[AAARA]3−ANH2 peptide
by means of UV resonance Raman spectroscopy
and by circular dichroism, respectively. In [16], the

Ac−WAAAH−[AAARA]3−A−NH2 peptide was consid-
ered. Figure 5 demonstrates that the results of our cal-
culation are in a reasonable agreement with the available
experimental data. Note that the molecular dynamics sim-
ulation significantly overestimates the helicity and is in
much worse agreement with experiment than the results
of our theory [16].

With the growth of the chain length the steepness of
the curve in the vicinity of the phase transition temper-
ature increases, which is another evidence for the first
order-like phase transition (see the inset in Fig. 5).

In this paper we have presented a new theoretical
framework for the description of the α−helix ↔RC phase
transition and explained the results of several independent
experiments. The suggested method is rather general and
with minor modifications can be applied to the description
of other molecular systems experiencing phase transition,
such as atomic clusters, liquids or gases. The detail inves-
tigation of all these systems is far beyond the scope of the
present article and is left open for future considerations.
Further development and detalization of our method is
also in progress.

We acknowledge support of this work by the NoE EXCELL
and are thankful to the CSC for providing us with computer
facilities.
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